近期,天津大学仰大勇教授课题组在DNA创制可持续生物塑料方面取得新进展,提出可持续DNA生物塑料的概念,发展了生物质DNA与可再生离聚物组装的新策略,成功制备了一种在生产、使用和废弃后处理全过程均与生态环境友好兼容的DNA生物塑料。
2021年11月14日,相关成果以“Sustainable Bioplastic Made from Biomass DNA and Ionomers”为题,发表在《美国化学会志》(Journal of the American Chemical Society)。第一作者为天津大学博士生韩金鹏(现为浙江大学博士后),合作者为中石油石化研究院张坤玉教授。研究得到国家自然科学基金等资助支持。
现有塑料的生产原料多来自石油化工产品,原料提取过程往往耗能高、污染高,并伴随温室气体和化学副产物的大量产生,给农业和大气环境造成严重污染。当塑料被填埋时,通常需要450年以上的时间才可降解。而且,塑料不完全降解产生的微塑料会随着生物链逐渐积累,如微塑料已在双壳类、鱼类和哺乳动物体内发现,最终将会对人类健康产生不利影响。
DNA被认为是一种取之不尽、用之不竭的生物高分子,可从生物体内提取,包括植物、动物和微生物。据统计,地球目前DNA总储量约为500亿公吨。如果可以将其中的小部分DNA转化为DNA塑料,理论上可以有效缓解日益增长的塑料使用需求。有鉴于此,仰大勇教授课题组开发了一种低温加工DNA生物塑料的新方法,制备了一种在生产、使用和废弃后处理过程均与环境相兼容的DNA生物塑料。DNA生物塑料的原材料包括天然DNA和离聚物,均来源于生物可再生资源。离聚物是一类分子链结构中含有一定量阴阳离子基团的聚合物,兼具离子液体和高分子的诸多优点,在自修复材料、智能响应材料和柔性电子器件等新兴领域具有广泛的应用前景。
采用低温加工方法,巧妙地利用DNA与离聚物之间的非共价键相互作用,可以将DNA/离聚物复合水凝胶转化为生物塑料,该过程无化学副产物产生和有机溶剂的使用。与石油基塑料熔融加工策略相比,常温加工的能耗仅为不到5%,是一种节约能源的方法。进一步,对于使用过的DNA塑料,可以通过无损回收策略重新制成新的塑料制品使用,也可以在DNA酶的作用下实现可控降解。DNA塑料回收不涉及高分子链断裂,是一种无损、低能耗的简易塑料回收策略。在实际生产中,现有的工业化设备可以快速地从藻类和细菌中大量提取生物质DNA,利用这些设备可以实现DNA年产量达数十万公吨,展现出巨大的市场生产化潜力。
由生物质DNA和离聚物为原料制备的可持续DNA生物塑料
在实际应用中,由于DNA的高度生物相容性,DNA塑料可被加工成生物贴片,结合DNA分子独特的生物学特性,有望在生物医学领域发挥重要作用。DNA塑料亦可加工成多腔室微结构,在生物传感、药物释放和组织工程等领域具有重要潜力。DNA塑料优异可折叠性和低温稳定性,在柔性电子皮肤和软机器人等领域展现出良好应用前景。此外,受当前水溶性聚合物薄膜广泛应用的激励,DNA塑料未来有望在日常生活中使用。